Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements
نویسندگان
چکیده
Throughout evolution, eukaryotic genomes have been invaded by transposable elements (TEs). Little is known about the factors leading to genomic proliferation of TEs, their preferred integration sites and the molecular mechanisms underlying their insertion. We analyzed hundreds of thousands nested TEs in the human genome, i.e. insertions of TEs into existing ones. We first discovered that most TEs insert within specific 'hotspots' along the targeted TE. In particular, retrotransposed Alu elements contain a non-canonical single nucleotide hotspot for insertion of other Alu sequences. We next devised a method for identification of integration sequence motifs of inserted TEs that are conserved within the targeted TEs. This method revealed novel sequences motifs characterizing insertions of various important TE families: Alu, hAT, ERV1 and MaLR. Finally, we performed a global assessment to determine the extent to which young TEs tend to nest within older transposed elements and identified a 4-fold higher tendency of TEs to insert into existing TEs than to insert within non-TE intergenic regions. Our analysis demonstrates that TEs are highly biased to insert within certain TEs, in specific orientations and within specific targeted TE positions. TE nesting events also reveal new characteristics of the molecular mechanisms underlying transposition.
منابع مشابه
A new resource of locally transposed Dissociation elements for screening gene-knockout lines in silico on the Arabidopsis genome.
We transposed Dissociation (Ds) elements from three start loci on chromosome 5 in Arabidopsis (Nossen ecotype) by using a local transposition system. We determined partial genomic sequences flanking the Ds elements and mapped the elements' insertion sites in 1,173 transposed lines by comparison with the published genomic sequence. Most of the lines contained a single copy of the Ds element. One...
متن کاملLarge-scale analysis of adeno-associated virus vector integration sites in normal human cells.
The integration sites of viral vectors used in human gene therapy can have important consequences for safety and efficacy. However, an extensive evaluation of adeno-associated virus (AAV) vector integration sites has not been completed, despite the ongoing use of AAV vectors in clinical trials. Here we have used a shuttle vector system to isolate and analyze 977 unique AAV vector-chromosome int...
متن کاملInsertion sequence-caused large-scale rearrangements in the genome of Escherichia coli
A majority of large-scale bacterial genome rearrangements involve mobile genetic elements such as insertion sequence (IS) elements. Here we report novel insertions and excisions of IS elements and recombination between homologous IS elements identified in a large collection of Escherichia coli mutation accumulation lines by analysis of whole genome shotgun sequencing data. Based on 857 identifi...
متن کاملCharacteristics of Transposable Element Exonization within Human and Mouse
Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse...
متن کاملHIV-1 Integration in the Human Genome Favors Active Genes and Local Hotspots
A defining feature of HIV replication is integration of the proviral cDNA into human DNA. The selection of chromosomal targets for integration is crucial for efficient viral replication, but the mechanism is poorly understood. Here we describe mapping of 524 sites of HIV cDNA integration on the human genome sequence. Genes were found to be strongly favored as integration acceptor sites. Global ...
متن کامل